Water clusters to nanodrops: a tight-binding density functional study.

نویسندگان

  • Pere Miró
  • Christopher J Cramer
چکیده

We predict structures and energies of water clusters containing up to 100 waters with tight-binding density functional theory (DFTB). A per-hydrogen-bond energy correction is found to correct for systematic errors in the DFTB cluster energies. We compare the DFTB structures and energies to density functional theory (DFT) calculations and to the most accurate wave function theoretical (WFT) values available (ranging from coupled-cluster theory to second-order perturbation theory). After including the simple hydrogen bond correction, we achieve a root-mean-square difference of less than one kcal mol(-1) with the best estimates. As DFTB optimizations are orders of magnitude faster than DFT or canonical MP2, it is apparent that DFTB is a very practical method for calculating large water cluster structures and, with the hydrogen bond correction, also energies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Curvature on the Mechanical Properties of Graphene: A Density Functional Tight-binding Approach

Due to the high cost of experimental analyses, researchers used atomistic modeling methods for predicting the mechanical behavior of the materials in the fields of nanotechnology. In the pre-sent study the Self-Consistent Charge Density Functional Tight-Binding (SCC-DFTB) was used to calculate Young's moduli and average potential energy of the straight and curved graphenes with different curvat...

متن کامل

Investigation of Nickle nanoclusters properties by density functional theory

Clusters play important role for understanding and transferring microscopic to macroscopic properties.Geometric and electron properties of Small nickel clusters up to the tetramer has been investigated by Density Functional Theory (DFT). Raising the number of nickel clusters atoms were indicated decreasing the average equilibrium (Ni-Ni) distance of atoms and also the binding energy of per atom...

متن کامل

Density Functional Study on Stability and Structural Properties of Cu n clusters

In this research DFT/B3LYP method has been employed to investigate the geometrical structures,relative stabilities, and electronic properties of Cun (n=3–10) clusters for clarifying the effect of sizeon the properties. Through a careful analysis of the successive binding energies, second-orderdifference of energy and the highest occupied-lowest unoccupied molecular orbital energy gaps as afunct...

متن کامل

The Effect of Substitution of a Zn Atom in Cdn-1TenClusters (n=1-10)

In this research, structural and electronic properties of ZnCdn-1Ten clusters (n=1-10) have been studied by formalism of density functional theory and using the projector augmented wave within local density approximation. The structural properties (such as bond length/angle and coordination number), electronic and optical properties (such as binding energy, Kohn-Sham spect...

متن کامل

Calculation for Energy of (111) Surfaces of Palladium in Tight Binding Model

In this work calculation of energetics of transition metal surfaces is presented. The tight-binding model is employed in order to calculate the energetics. The tight-binding basis set is limited to d orbitals which are valid for elements at the end of transition metals series. In our analysis we concentrated on electronic effects at temperature T=0 K, this means that no entropic term will be pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 15 6  شماره 

صفحات  -

تاریخ انتشار 2013